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Introduction 

In reference one [1] we have discussed time-domain implementations of FIR filters, whose actions are based 

on and can be analyzed via the principle of convolution. We have further covered several techniques that 

provide us with proper time-domain filter coefficients. The three principle techniques that we have used in 

the past are the frequency sampling, the equiripple and the least-squares methods. However, with the advent 

of software-based radios, the need has arisen to find computationally more efficient techniques to perform 

filtering. As the following figure reminds us, time-domain filtering requires N potentially complex 

multiplication, where N is the number of coefficients, and a similar number of addition steps every time a 

new sample arrives at the next clock edge. Imagine a filter with N = 51 coefficients processing an input 

sequence x[n] featuring 2048 samples. The complex multiplications alone number 2048‧51 = 104448. 

 

 

Figure 1: FIR Filter Structure Implemented as a Transversal Filter with Coefficient Vector H = [h[0], h[1], … h[N-1]] 

 

Whereas this fact may not be a major problem for hardware implementations in FPGAs or digital ASICs, it 

is not the preferred method for software implementations. In this document, we will introduce the frequency 

domain method of digital filtering using I/FFT operations, which is far more efficient in software 

implementations of digital filtering. 

 

Convolution (Digital Filtering) in the Time Domain 

 

At any one time instance n, the value x[n] will reside at the input of our model, whereas y[n] will reside at 

its output. Those samples that have appeared at the input in the past (x[n-1], x[n-2] … ) have already traveled 

down the delay line and are multiplied by the model’s coefficient vector h = [ h[0], h[1] … h[N-1] ]. As is 

evident in the figure above, y[n] is calculated as follows. 

 

y[n] = h[0]∙x[n] + h[1]∙x[n-1] + ∙∙∙ + h[N-1]∙x[n-(N-1)] 
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Convolution is the mathematical operation that computes the time domain output waveform, y[n], of a 

LTI (linear time-invariant) system given an arbitrary time domain input signal, x[n], and the impulse 

response, h[n], of the system. LTI systems in the realm of discrete math are also called LSI (linear 

sample-invariant) systems. 
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The simple expression above points us to the first formulation of the convolution operation for an LTI 

system with N model coefficients. 

                                                     𝑦[𝑛] = 𝑥[𝑛]⨂ℎ[𝑛] = ∑ ℎ[𝑘] ∙ 𝑥[𝑛 − 𝑘] 
𝑁−1

𝑘=0
                                          

 

As a reminder from your ‘Signals and Systems’ class in college, let us present the continuous time version 

of the convolution operation. 

                                                        𝑦(𝑡) = 𝑥(𝑡)⨂ℎ(𝑡) = ∫ ℎ(𝜏) ∙ 𝑥(𝑡 − 𝜏)𝑑𝜏
∞

−∞
                                                       (1) 

 

You may also remember that the frequency content, Y(f), of the filtered output signal, y(t), was simply the 

product of the Fourier transforms of the input signal x(t) and the filters impulse response h(t). The appendix 

shows the derivation of the formula below. 

                                                                                 𝑌(𝑓) = 𝑋(𝑓) ∙ 𝐻(𝑓)                                                                             (2) 

 

Digital Filtering in the Frequency Domain 

In discrete time, the result above is suggesting the following, 

 

 Y[m] = DFT (x[n]) ‧ DFT (h[n]) = X[m] ‧ H[m]  

and more importantly,  

       y[n] = IDFT ( DFT (x[n]) ‧ DFT (h[n]) )                                                

                                                              y[n] = IDFT ( DFT (x[n]) ‧ H[m] )                                                  (3) 

 

The equations above lead us to a straight forward, but somewhat premature conclusion, which indicates the 

following course of action. 

→ Take the DFT of the input signal x[n] to produce X[m]. 

→ Zero-pad the coefficient vector, h[n], until its length is equal to that of x[n], and then take the DFT to 

produce H[m]. 

→ Take the IDFT of product of X[m] and H[m] to arrive at the filtered signal, y[n].  

 

This approach is basically correct, but there are a few alterations that we have to consider. 

1. The input sequence, x[n], may be very long thus forcing us to break it up into convenient sections 

of a size that will allows us to compute the FFT. How to break up the sequence is not obvious and 

we will illustrate it in the next section. 

2. There is no need to synthesize a coefficient sequence, h[n]. Whether we operate in the time or 

frequency domain, the goal is always to create a filter frequency response that suits our needs, and 

this response is always defined in the frequency domain. For time domain filters, we are stuck 

finding some way to get from that desired frequency response back to h[n], but as we are filtering 

in the frequency domain, this is no longer needed. We simply set H[m] to whatever we want. Thus, 

we only need to take the FFT of the current section of x[n] and the IFFT of the product of X[m] and 

H[m]. 

 

Method 1 

The following figure illustrates a flawed method of dividing the input sequence, x[n], into equally long 

sections before computing the frequency domain filtering process. 
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Figure 2: First Method of Generating Subsections of the Input Sequence, x[n] 

 

The method shown above divides the input sequence, x[n], into sections each featuring 2048 

samples ready to be processed by the FFT. We would simply take the FFT of each section, multiply 

the result by H[m] and then take the IFFT to get to the output sections that when concatenated yield 

y[n]. The problem with this approach is that it will produce discontinuities at the boundaries of the 

output sections. In part a) of the figure below, observe the real continuous waveform, x[n], as it 

progresses from section 1 through section 3. Once we isolate section 2 to form a vector x2[n], we 

lose the knowledge of the waveform x[n] as it existed at the end of section 1 and beginning of 

section 3. When we take the FFT of x2[n], the frequency information of section 2 represents a 

periodic waveform that repeats every 2048 samples and will look like part b) of the figure below. 

Notice how the samples at index 2048 and up are equal to those at 0 and above. Likewise the 

samples approaching index 2047 are the same as those samples below n = 0. If we multiply X2[m] 

and X3[m] by H[m] and then take the IFFT to move back into the time domain, there is no guarantee 

that the section y2[n] and y3[n] will connect continuously at the section boundary.  
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Figure 3: The Periodic Nature of a Section Once Isolated and Transformed by the FFT 

 

In a time-domain filter implementation, the situation is very different, as filtering any sample in 

x[n] requires that both past samples (x[n-1], x[n-2], ..) and future samples (x[n+1], x[n+2], …) are 

accessible in the FIR filters shift register.  

 

 

 



Method 2 

The next figures illustrate the proper way of solving the discontinuity problem associated with 

frequency domain filtering. This method still divides the input waveform x[n] into sections of 

length 2048, but this time there are overlapping regions of length 256 samples. Sections x1[n], x2[n], 

and x3[n] span samples x[0 … 2047], x[1792 … 3839], x[3584 … 5631] and so forth. We multiply 

a mask onto each section to smoothly force the sample values at the start and end of each section 

to zero. There are different possibilities for this mask and we show just two of them below. 

 

Figure 3: Possible Masks Applied to Each Section 

The total mask, k[0] through k[2047], consists of a front and back portion as well as the center 

section whose samples are always equal to 1.0. If you add the front and back portions of the mask, 

all samples must also add to 1.0. The front and back masks can be the first and seconds halves of a 

Hanning or triangular window as shown in the figure above. The equation for the Hanning window 

is provided below. The total length of the window would be N = 512, which splits up into two 

halves each with a length of 256 samples (see figure 7 at the end of this document). 

𝐻𝑎𝑛𝑛𝑖𝑛𝑔[𝑛] = 0.5 − 0.5cos (
2𝜋(𝑛 + 1)

𝑁 + 1
) 

 

 

Figure 4: Second Method of Generating Subsections of the Input Sequence, x[n] 
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The figure above illustrates the processing steps for sections x1[n], x2[n], and x3[n], which produce output 

sections y1[n], y2[n], and y3[n]. Take care to overlap these output sections as well to yield the final 

output waveform y[n]. 

Example 

In the following example, we will write MatLab code that executes both methods of frequency domain 

filtering. The sample rate of the signal is set to Fs = 1 MHz, and the input signal, x[n], and filter magnitude 

response are defined as follows. Note further, that in this example the sections are 4096 samples long, and 

the filter will eliminate the tone at 75KHz.  

𝑥[𝑛] = cos (
2𝜋 ∙ 𝑛 ∙ 3000

𝐹𝑠
) + cos (

2𝜋 ∙ 𝑛 ∙ 10000

𝐹𝑠
) + cos (

2𝜋 ∙ 𝑛 ∙ 75000

𝐹𝑠
) 

𝐻(𝑓) = [
1 𝑓𝑟𝑜𝑚 − 39𝐾𝐻𝑧 𝑡𝑜 + 39𝐾𝐻𝑧
0                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

% ------------------------------------------------------------------------------ 
% 0. Simulation Setup 
Fs  = 1e6;                 % Sample Rate in Hz 
Len = 4*4096;              % Number of samples in test waveform  
n   = 0:Len-1;             % The sample indices 
disp(['Nyquist range spans: ' num2str(-Fs/2) ' to ' num2str(Fs/2) ' Hz.']); 
  
  
% ------------------------------------------------------------------------------- 
% 1a. Generate input signal 1 -> cos(2*pi*n*F1/Fs) 
F1      = 3e3;                  % Frequency of test signal 1 
Signal1 = cos(2*pi*n*F1/Fs);    % Signal1 
  
% 1b. Generate input signal 2 -> cos(2*pi*n*F2/Fs) 
F2      = 10e3;                 % Frequency of test signal 2 
Signal2 = cos(2*pi*n*F2/Fs);    % Signal2 
 

% 1c. Generate input signal 3 -> cos(2*pi*n*F3/Fs) 
F3      = 75e3;                 % Frequency of test signal 3 
Signal3 = cos(2*pi*n*F3/Fs);    % Signal3 
  
% 1d. The final composite signal x[n] 
x_n = Signal1 + Signal2 + Signal3; 
  
% In this exercise we will be filtering away Signal3. To evaluate how well 
% the filtering process worked, we synthesize the ideal filtered signal. 
x_n_Filtered = Signal1 + Signal2; 
  
% Let's take a look at the composite waveform, x[n] 
figure(1); 
DisplayRange = 3900:4200; 
subplot(3,1,1); 
plot(DisplayRange, x_n(1, DisplayRange), 'k'); grid on; hold on; 
plot(DisplayRange, x_n_Filtered(1, DisplayRange), 'k.-', 'LineWidth', 2); 
title('Input Sequences'); 
legend('Input Waveform, x[n]', 'Ideal Filtered Waveform'); 

  
  

Observe the first subplot on the next page, which illustrates a small section of what would otherwise be a 

very busy plot. We see a certain number of samples of the original waveform x[n] as well as what we would 

be expecting the filtered waveform to look like. The sample range was chosen to span the boundary between 

input sections 1 and 2. Whereas we haven’t shown the rest of the code, subplot 2 illustrates the output of 

filtering method 1 and 2, and the discontinuity at the section boundary around sample 4086 is clearly visible 

for the filtered waveform produced by method 1. The third subplot illustrates the very small error between 



the ideally filtered signal, that only consists of sinusoids at 3KHz and 10KHz, and the filtered signal of 

method 2, thus proving its effectiveness. Clearly the error is tiny compared to the one from method 1. 

 

Figure 5: Performance Comparison between Filtering Method 1 and 2 

 

The figure below illustrates the positive portion of the spectrum of the input waveform, x[n], which we 

generated in section 1 of the MatLab code. The filter is set up in section 2 of the MatLab code. Note how 

we define the frequency response, H[m], for both positive and negative frequencies in the code. 

H[0:159] = 1.0 corresponds to frequencies 0 through 159‧1MHz/4096 = 0 through 38.818Khz. 

H[3937:4095] = 1.0 corresponds to frequencies [-159 to -1] ‧1MHz/4096 = -38.818KHz through -244.14Hz. 

 

 



Figure 6: The Input Signal Spectrum as well as the Filter Magnitude Response for Positive Frequencies 

 

% ---------------------------------------------------------------------------- 
% 2. Defining the Filter frequency Response. Note, the frequency response will 
% be entirely real valued. 
% Our goal is the reject the signal with Frequency F3. 
% Remember, that the frequency step is equal to Fs/SectionLength 
NumSections        = 4; 
SectionLength      = 4096; 
FStep              = Fs/SectionLength; 
disp(['Frequency Step: ' num2str(FStep)]); 
 

H_m                = zeros(1, SectionLength); 
H_m(1,1:160)        = ones(1, 160);   % Define passband for positive frequencies 
H_m(1,end-158:end)  = ones(1, 159);   % Define passband for the negative frequencies 

 

% ---------------------------------------------------- 
% 3a. Method 1: Non-Overlapping sections 
  
y1_n = zeros(1, length(x_n)); 
for SectionIndex  = 0:(NumSections-1) 
   Range          = (1:SectionLength) + SectionIndex*SectionLength;  
   Section        = x_n(1, Range); 
   DFT_Section    = fft(Section); 
   Y_m            = H_m .* DFT_Section; 
   y1_n(1, Range) = ifft(Y_m); 
   if(SectionIndex == 0) 
     figure(2); 
     m = 0:600; 
     f = m*FStep; 
     % The division by 500 is only there so that we can easily compare 
     % the signal spectrum and the filter's magnitude response. 
     plot(f, abs(DFT_Section(1, m+1))/500, 'k'); grid on; hold on;  
     plot(f, abs(H_m(1, m+1)), 'k-', 'LineWidth', 2); 
     title('Signal Spectrum and Filter Response'); 
     xlabel('Frequency in Hz'); 
     legend('Signal Spectrum', 'Magnitude Response of Filter'); 
   end 
end 

 

% --------------------------------------------------- 
% 3b. Method 2: Overlapping Sections 
  
HannLength    =  256;               % 256 samples long – try 512 or 128 if you like 
HanningWindow = hann(HannLength)'; 
FrontMask  = HanningWindow(1, 1:HannLength/2);               % 128 samples long 
BackMask   = HanningWindow(1, (1+HannLength/2):HannLength);  % 128 samples long 
TotalMask  = [FrontMask, ones(1,SectionLength-HannLength), BackMask]; % 4096 samples 
y2_n       = zeros(1, length(x_n)); 
for SectionIndex  = 0:(NumSections-1) 
   Range          = (1:SectionLength) + SectionIndex*(SectionLength - HannLength/2);  
   Section        = x_n(1, Range).*TotalMask; 
   DFT_Section    = fft(Section); 
   Y_m            = DFT_Section .* H_m ; 
   OutputSection  = ifft(Y_m); 
   y2_n(1, Range) = y2_n(1, Range) + OutputSection; 
end 
  
figure(1); 
subplot(3,1,2); 
plot(DisplayRange, y1_n(1, DisplayRange), 'k.-');  grid on; hold on; 
plot(DisplayRange, y2_n(1, DisplayRange), 'k'); 
axis([3900 4200 -2 3]); 



title('Filtered Waveforms via Method1 and Method2'); 
legend('Method1', 'Method2'); 
  
subplot(3,1,3); 
plot(DisplayRange, y2_n(1, DisplayRange) - x_n_Filtered(1, DisplayRange), 'k'); grid 
on; hold on; 
%plot(DisplayRange, y2_n(1, DisplayRange) - x_n_Filtered(1, DisplayRange), 'k'); grid 
on; hold on; 
title('Error between Ideally Filtered Fignal and Method2 Result.'); 
  
  
figure(3); 
subplot(2,1,1); 
stem(FrontMask, 'k'); grid on; 
title('The front part of the Hanning Window Magnitude Mask'); 
subplot(2,1,2); 
stem(BackMask, 'k'); grid on; 
title('The back part of the Hanning Window Magnitude Mask'); 

 

 

Figure 7: The Front and Back Portion of the Magnitude Mask Applied to Each Input Section 

 

Appendix 

For those of you who are a little rusty on the topic of convolution, the process of computing the frequency 

domain expression of the time domain convolution integral is shown below. 

 

                                                        𝑦(𝑡) = 𝑥(𝑡)⨂ℎ(𝑡) = ∫ ℎ(𝜏) ∙ 𝑥(𝑡 − 𝜏)𝑑𝜏
∞

−∞
                                                        

However, before we begin, let us first review the equation of the time-domain Fourier transform as well as 

the time shifting property of the Fourier Transform, as we will need both in the coming derivation. The 

Fourier transform of a time domain waveform x(t) is as follows. 

𝐹𝑇(𝑥(𝑡)) = 𝑋(𝑓) = ∫ 𝑥(𝑡) ∙ 𝑒−𝑗2𝜋𝑓𝑡
∞

−∞

𝑑𝑡 

The time shifting property of the Fourier transform is as follows. 

𝐹𝑇(𝑥(𝑡 − 𝑡𝑜)) = 𝑒−𝑗2𝜋𝑓𝑡𝑜 ∙ 𝑋(𝑓) 

Let us now take the Fourier transform of the convolution integral.  

𝐹𝑇(𝑦(𝑡)) = ∫ [∫ ℎ(𝜏) ∙ 𝑥(𝑡 − 𝜏)𝑑𝜏] ∙ 𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡 
∞

−∞

−∞

−∞

 



 

Notice that the expression in the parenthesis below is the Fourier transform of x(t-τ). 

= ∫ ℎ(𝜏) ∙ [∫ 𝑥(𝑡 − 𝜏) ∙ 𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡]𝑑𝜏 
∞

−∞

−∞

−∞

 

Using the time shifting property of the Fourier transform, the expression reduces to the following. 

= ∫ ℎ(𝜏) ∙ 𝑋(𝑓) ∙ 𝑒−𝑗2𝜋𝑓𝜏𝑑𝜏
−∞

−∞

 

As we are not integrating over frequency, we can move the expressions X(f) to the front. 

= 𝑋(𝑓) ∙ ∫ ℎ(𝜏) ∙ 𝑒−𝑗2𝜋𝑓𝜏𝑑𝜏
−∞

−∞

 

The integral that remains is simply the Fourier transform of h(τ), which we rechristen as H(f). 

                                                                  𝐹𝑇(𝑦(𝑡)) = 𝑋(𝑓) ∙ 𝐻(𝑓)                        
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